Technology for energy resilience
Predictive maintenance in the energy industry
04 Dec 20 by Engerati

Organisations in the energy sector could be in danger of downtime due to power failures, as recent research reveals that a quarter of energy decision makers do not have a power contingency plan in place. Now, the energy industry must use technology and predictive maintenance to improve its resilience to power failures.
The survey of 200 UK energy bosses commissioned by Aggreko highlighted a real problem of energy firms relying on old methods. Traditionally, periodic maintenance has been used to reduce downtime — servicing performed on equipment at set time intervals. However, maintaining assets in complex energy operations is not that straightforward.
Consider a wind power plant, for instance. Maintenance in this sector requires removing equipment from the grid and installing temporary replacements to continue power supply. This is a costly process and can be incredibly time consuming when the periods between scheduled maintenance timepoints are short.
Predictive over periodic
That is why the energy sector is moving towards predictive maintenance. An alternative to periodic maintenance, predictive maintenance techniques are designed to determine the condition of equipment with data and sensors, to estimate when maintenance is required. Using this model, the energy industry only needs to perform upkeep when it is actually warranted, as opposed to on a rigid schedule.
As a result, predicted maintenance intervals are usually longer than periodic intervals. This reduces the number of equipment changes and temporary installations on the grid. Naturally, this saves money, but more importantly, helps reduce the likelihood of power outages.
Condition monitoring
A key enabler of predictive maintenance is condition monitoring — the process of measuring specific equipment parameters to identify developing faults. In the past, technicians listened to a running pump or the vibrations of a turbine before deciding whether the device was operating effectively. Now, technology can be deployed to more accurately diagnose impending problems to increase accuracy and overall effectiveness.
For example, sensors can automatically record the sound, vibration, temperature and surrounding humidity of an asset, which when combined with software, alert operators to equipment showing signs of wear. In addition, machine learning software can detect patterns over time, to intelligently provide an indication of an upcoming failure. From this, grid operators can pinpoint when a breakdown will occur, ensuring they have enough time to source new parts and avoid a dreaded power outage.
Energy grid software, like COPA-DATA’s zenon, is essential for enabling communication between grid assets and the operator. zenon can acquire, read and communicate all types of data through its range of communication drivers, regardless of the communication protocol used by each asset.
After collecting asset data, the information provides a basis for every predicting algorithm. Additionally, the results of the algorithm can be visualized by zenon — either as a graph showing the trend, an alarm notification or via the operator’s preferred representation — to advise operators of the grid asset’s state.
By using technology like zenon, assets and systems can be resilient to downtime and ensure power failures are something of the past. While a quarter of energy decision makers currently do not have a contingency plan in place, predictive maintenance measures could be the answer.
By Jürgen Resch, industry manager at COPA-DATA
Comments
Login on register to comment
Related content

Energy Generation
2020 was the greenest year on record for Britain
2020 saw the highest recorded levels of wind generation and solar power

Energy Generation
Centrica set to open Belgium’s biggest battery park in 2021
Centrica Business Solutions set to optimise new virtual power plant to act as environmentally friendly back up to the grid in Belgium

Energy Generation
New funding framework announced for heat networks
Funding will facilitate the transition to net-zero by helping public bodies access private capital
Related supplier content

Energy Retail
Participants in demand response programmes show 30% more engagement with their utility
Currently less than 2% of the global potential for demand response is being utilised, according to the International Energy Agency.
Energy Generation
Demand response trends powering the energy and utilities industry: Meet Project Respond

Transmission & Distribution