New Wave and Tidal Energy Technologies Review

Published: Thu 08 Aug 2013
A blog entry by John Davenport

Contributed by:

John Davenport
The Daily Fusion

John Davenport's Blog

There have been many attempts to use both wave and tidal energy for at least a century now, however, until recent times, this technologies have remained largely experimental. During the last few month we have seen several ocean energy projects ranging from experimental turbine design tests to full-scale commercial applications. There was also a number of theoretical works on various aspects of tidal power.
In March Alstom—a large French multinational conglomerate which holds interests in the power generation and transport markets—has tested a new 1MW tidal power turbine at a test site located in Orkney, Scotland. Alstom’s tidal turbine consists of a three-bladed, pitch-controlled rotor, with a diameter measuring 18 meters (59 feet); a standard drivetrain and power electronics inside the nacelle. The turbine is easy to transport (due to its buoyancy), can rotate to reflect the direction of the tide and can change the pitch of the blades to control the load.
Detailed testing and analysis of this technology in different operational conditions will continue throughout 2013 over an 18 month period, in order to further improve tidal power technology. The next step is to install pilot arrays prior to full commercial production.
A less conventional turbine technology has been proposed by Swedish scientists. The experimental vertical-axis hydroelectric turbine has been successfully installed on the bottom of the Dal River in Sweden (March, 2013). If verified, new turbine design can be applied primarily to harness the power of ocean tides. It could, however, also be used in conjunction with traditional hydropower systems to extract more energy from the rivers. Inventors have already received an offer to use this technology to set up a power station in a lagoon in the Seychelles.
While tidal energy is abundant, there is a problem of finding the optimal locations for the new tidal facilities to ensure efficiency and to minimize operational hazards. That is made more difficult by the lack of measurement data that can be used to exactly evaluate tidal power potential of a specific location. Scientists at the Uppsala University in Sweden have partially solved this problem by showing that currently available water data can be used for estimating the movement speed of water and thereby the potential energy resource available in a particular area. For example, for tidal currents, the speed can be estimated by using the data from nautical charts and data on tidal water height. This work was done as a part of a larger, ongoing marine power research project. The goal of the project is to develop the simplest possible method to harvest energy from flowing water.
When it comes to commercializing marine energy and getting it to the market, the brightest recent example is the wave power project by Aquamarine Power—a wave energy company, which was founded in 2005 to commercialize a wave energy device concept known as the Oyster wave energy converter. Following a full approval from the Scottish Government at the end of May, 2013, Aquamarine Power announced its intention to start construction of a 40MW wave farm off the north-west coast of Lewis, Scotland. As of today, this is the world’s largest fully-permitted ocean energy site.
This last example shows that while most ocean energy technologies are still quite young and undeveloped, some of them have now reached the point where they are ready to be used commercially.
If you like this post, please consider subscribing to The Daily Fusion pages on Facebook or Google+ to stay up to date on the latest news on cutting-edge technology and science in energy industry. You can also follow @dailyfusion on Twitter.