A Critical Issue - Water Resiliency

Published: Mon 16 Feb 2015
A blog entry by Christine Hertzog

Contributed by:

Christine Hertzog
Managing Director
Smart Grid Library

Christine Hertzog's Blog

A crisis is a terrible thing to waste. It took a drought of epic proportions to force the Australian nation to radically reform its water policies and practices. California is now in the fourth year of its own serious drought, with growing negative impacts to economies, communities, and ecosystems. While there’s great value in California adopting similar actions that Australia took to manage a dwindling resource, there are great challenges as well.

For starters, California’s water laws are irrational. Senior and junior water claims are based on the timing of gold rush era prospectors nailing pieces of paper to trees adjacent to water sources. Some industry experts estimate that it would take 30 years of full time work just to sort out the claims and hierarchies on water sources before an overhaul could be started. That would be a daunting task here and in other western states governed by similar claim precedents. But it gets worse. California’s water consumers are also irrational. In California, 90% of the state’s water is dedicated to agricultural use. Much of that agriculture is focused on water-intensive crops like cotton and alfalfa. If you’re wondering why a desert climate is producing crops that are better suited to regions with significantly predictable precipitation, you’re not alone.

At that December water conference, California officials seemed most interested in the physical improvements that could be mandated in building codes (such as rain catchments) but deflected questions on how legislation could change California water laws to encourage conservation and agriculture models more suited to desert climates.

There’s an additional complication. California’s primary source of water is winter precipitation that is conveniently stored in the form of snow. It’s very difficult to measure exactly how much snow falls in any given season and accurately predict how much of that snow will melt into useable water in the ensuing summer. Snow water equivalent describes the amount of water contained in snow pack. As you can intuit, dry snow contains less water than wet snow, and sometimes the differences can be as extreme as thirty inches of dry snow for one inch of water versus five inches of wet snow yielding one inch of water.

California’s snowpack, or lack of it, is not just an important source of drinking water. It is also a source of electricity generation in the state. A shrinking snowpack impacts the hydropower that can be generated. It’s a uniquely Californian take on that energy/water nexus, and it’s not a sustainable strategy. There’s a real lack of resiliency in the current water infrastructure that also impacts energy.

There are more available solutions to address hydropower reductions than potable water reductions. The electricity infrastructure is more amenable to optimization through ongoing applications of innovative technologies, policies, and financial capital.   More distributed generation plus energy storage can replace some hydropower reductions. But as far as water infrastructure goes, these systems are much more inflexible and much less optimized than their electric grid counterparts. It’s just the early days for deployment of Smart Grid technologies into water infrastructure in California and much of the rest of the USA.   But more than that, we’ll need smart water policies and innovations in financing the necessary water infrastructure upgrades to address critical resiliency concerns.

Christine Hertzog

Smart Grid Library